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Abslracl ?he double-cluster approximation (DCA) and the multieffective-field approxi- 
mation (MEFA) are formulated for the two-dimensional S = f tranwem king model on a 
square lattice in the ground state. There WO cluster-effective-field approximations expand 
the Sizes of ClUSterS effectively. Combining =me suitable series of these approximations 
with the coherent-anomaly method (CAM), we have analysed the critical phenomenon of 
this model. We have obtained g: = 1.528 f 0.016 and 7 = 1.25 f 0.08 using the 
DCA. and 7 = 1 . 2 6 f 0 . 1 0  using the MEFA. These estimates are consistent with the other 
results, g: = 1.52 and 7 2 1.24. Our ssheme is expected to be useful in the study of 
frustrated systems, because various shapes of dusters cm be used in our calculations. 

1. Introduction 

iiecentiy the ground-state properties of two-aimensionai frustrated quantum spin sys- 
tems have been intensively studied, because their properties seem to be in close 
relation with the mechanism of high-temperature superconductors. 

Although numerous studies of these problems have already been done, even their 
ground-state properties are not yet clearly understood. The spin-wave (or modified 
spin-wave [l]) calculation [2-51 is nothing but an approximation, only small systems 
can be treated in the exact-diagonalization calculation [3, HI, and the negative sign 
is very severe in quantum Monte Carlo calculation. 

In the present paper we propose a new approach to ground-state phase tran- 
sitions in two-dimensional quantum spin systems. It is based on cluster-effective- 
field approximations and the coherent-anomaly method (CAM) [%11]. Although the 
sizes of the available clusters are of the same order as the ones used in the exact- 

Each approximation shows a classical singularity in the vicinity of its mean-field crit- 
ical point, true critical phenomena can he ohtained from a series of approximations 
using the CAM. Conversely, we can judge whether a series of approximations is good 
or not hy their coherent anomaly. 

The purpose of this paper is a test of our scheme hefore applying it to quantum 
antiferromagnets and frustrated quantum spin systems. We use the double-cluster 
approximation (DCA) [12-181 and the multi-effective-field approximation (MEFA) [IS, 
19-22] for the two-dimensional S = 

diagasa!i.ltio!! ..!c!!!ation, their sizes 11e @ C ! i ! Z &  expanded i!! Qur new scheme. 

transverse Ising model on a square lattice: 
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Figure L me way of application of the effective field He* in the QCA. 
4 x 3 dusters are used here. 

where denotes the sum Over all the nearest-neighbour bonds. Since the crit- 
ical phenomenon of this model have already been extensively studied 123-273, our 
estimates based on the CAM can be compared with these previous results. 

In section 2, the DCA is formulated in the present model. The critical point 9,' 
and the critical exponent y are estimated using the DCA and the CAM. In section 3, 
we present a similar formulation and estimation based on the MEFA and the CAM. 
Section 4 is devoted to a summary and discussion of these descriptions. 

3 x 3 and 

2. CAM analysis of the OCA series 

In the present section we formulate the DCA for the two-dimensional S = 4 transverse 
king model on a square lattice. Both an equation to determine the mean-field 
critical point and an expression for the critical coefficient of the zero-field magnetic 
susceptibility are obtained. A brief review of the CAM is also given in this section. 
The values of the critical point and the critical exponent are estimated from this 
series of approximations using the CAM. 

21. Formulafion of fhe DcA 

In this approximation we mnsider WO diferent clusters A and B, and apply the same 
effective field Hem on their boundary spins (figure 1). The effective Hamiltonian of 
the N,spin cluster ( I  = A or E) is given by 

NI NI N, 

(i j)€nr i =1  i=1 j=1 
xN, = - s:s; - SCS: - HCS;  - H,~CZ~S; (2.1) 

where z, denotes the number of effective-field bonds on the site j. Namely, on a 
square lattice, 

2 on a corner 
zj  = { 1 on an edge 

0 in the bulk. 

The required self-consistency condition is 

(2.3) 

where (. . .); denotes the ground-state average in the cluster I. 
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As was explained in the previous paper [17], the order parameter of the cluster 
I can be expanded with respect to He, and H: 

= P'H,, + R'H + . . . . 
The mean-field critical point 9, is determined [17] as the solution of the following 
equation 

PA = PB (2.6) 

and the susceptibility at g = ge + 0 is given [17] by 

where z$ = zf because of condition (2.6). 
In the CAM, the critical coefficient z+ is scaled [9, 101 as 

in some suitable series of approximations (canonical series). Here the 'degree of 
approximation' 6 ( g c )  is defined by 

and the true critical exponent y is obtained [9, 101 from the following relation, 

Y = -/,I + @. (211) 

All the quantities in the formulae (2.6) and (2.8) are expressed by derivatives of 
the order parameter with respect to H ,  H e ,  or g (at most twice). Such derivatives 
can be calculated sufficiently precisely hy numerical differentiation [B]. For example, 
the quantity P' can be evaluated by 

(2.12) 

where AH,, denotes the difference of H e ,  from its critical value, zero. Since only 
the ground state of the cluster Hamiltonian is used in this calculation, we can utilize 
the Lanczos algorithm and treat large (here, up  to 5 x 4) clusters. 
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22 Estimation cf the non-classical critical aponent 
According to applications of the DCA to the two-dimensional Ising model [161 and the 
two-dimensional ZICJ Ising spin glass 1181, the shape of each cluster should be similar, 
namely it should be a square or a near-square rectangle. In the present paper we 
have weated Zapin (2 x l), 4spin (2 x 2), 6spin (3 x 2), 9-spin (3 x 3). 12spin 
(4 x 3), 16apin (4 x 4) and 20apin (5 x 4) clusters. 

Since numerical differentiation is used in the present calculation, we should take 
care of the accuracy of the results. All the excited states of the cluster Hamiltonian 
can be evaluated easily in small (here, up to 9-spin) clusters, and the calculation 
without numerical differentiation [17] is possible. Comparing the results obtained 
from these two calculation, we have optimized rhe differences AH,  A Hem and As. 
Finally, the values given by these two methods come to be consistent with one another 
up to the order - lo-'' in gc, and - 

Results for various pairs of clusters are given in table 1. Generally speaking, 
approximations obtained from smaller clusters do not show good scaling properties. 
Thus, we have made the  least-squares fitting for the 6-12, 9-12, . . ., 16-20 approxi- 
mations. We have assumed the simple CAM scaling form (2.9) and obtained (see 
figure 2) 

Y Nonomura and M Suruki 

in z+. 

yc - - 1 5752 I n n i  I: y = 1.25 f G.08. (2.13) 
Here the errors indicate the standard deviations in the estimates obtained by the 
fitting. The deviation of %+ is of the order - in each approximation. It is 
much larger than the error which originates from numerical differentiation. Thus, in 
the present estimation, we have neglected the error coming from numerical differen- 
tiation. 

Tabk 1. The mean-field mlical  point gc and the crilical mefficient ?+ in the DUI. 

2 
2 
a 
4 
6 
6 
9 
9 
12 
12 
16 - 

4 1.625646 
6 1.618988 
6 !.6!9Cr?? 
9 1.597&9 
9 1.589349 
12 1.586156 
12 1.581846 
Ih 1.575423 
16 1.570844 
20 1.568950 
20 1.566547 

0.4034 
0.4122 
a4zo 
0.4442 
0.4569 
0.4f42 
0.4742 
0.4890 
0.5WO 
0.5M3 
0.5145 - 

3. CAM analysis of the MEFA series 

In the present section we formulate the MEFA for the two-dimensional S = trans- 
verse king model on a square lattice. Both simultaneous equations to determine the 
mean-field critical point together with an expression for the critical coefficient of the 
zero-field magnetic susceptibility are obtained. The values of the critical point and 
the critical exponent are estimated from this series of approximations using the CAM. 
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18-20 
12-20 

-0  30 12-16 1 
t , 2 -0.32 

M 
0 - -0.34 - 

-0.36 

L 
-1.6 -1.5 -1.4 -1.3 

log6(gc) 

Fkwr 2 Coherent anomaly of Ihe CCA series. Log%+ i ploied against log6(gc). 
Each pair of numkn denoles NA and Ng. straight line, Ihc slope of which is 
equal 10 -+, iS delemined by the least-squares fitting using lhe data represented 
the full circles 

3.1. Formulation of the MEPA 

In this approximation we consider not only one-body effective fields but also multi- 
body effective fields. Even if we fix the size of the cluster, we can obtain various 
approximations by altering the combination of multi-body effective fields. The effec- 
tive Hamiltonian of the cluster S2 is given by 

N N 
X e f l  = - S; S; - gC S,Z - H S; - J, QY - H .  1 1  (3.1) 

(ijlcn i=1 i = l  j j 

where the quantity Q;,,, (Q;”) denotes the sum of even (odd) number products of 
spins on which the corresponding even (odd) effective field J, (Ifj) is applied. 

For example, on the 3 x 3 cluster (figure 3), explicit expressions for {Q,} are 
given as follows 

QYdd = Sf + Si + S i  + S; 

Qidd = Si + si + Sc + $7: Odd (3.2) 

Q Y  = Sf S; + S; S; + Si Si + St S t  + ,S; S t  + St S; + S; S: + Si  Sf 

{ :  

Even { Qy = ,sf + s; + s; 29; + si Sf  (3.3) 

and the required self-consistency conditions are 

(AQYdd), (Sf), - = 0 

= (sa, - (sa, = 0 

( A Q F )  R -  = (S;S;)g - = 0 
Even { ( A Q Y )  (I = - (S;S;), - (S,’.St)a = 0 

.. 

(3.4) 

(3.5) 
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HI H ,  

J ,  J ,  
Figure 3. ?he multi-body effective fields applied an h e  3 x 3 clusler. 

The key point of the present formulation is that the odd effective fields {H,} 
vanish above the mean-field critical point gc, but that the even effective fields { J , }  
always take non-vanishing values. Then the ground-state average of a quantity Q a n  
be. written as 

where (. . .); denotes the ground-state average with respect to the following effective 
Hamiltonian, 

N 

(3.7) 

The mean-field critical point g, is given [20] by the solution of the following 
equation, 

(3.8) 

The unhown parameters { J , }  are included in the explicit expression of (3.8). Thus, 
the d u e s  of g, and {Jjj  are determined as tne soiutions of tine simultaneous eqiia- 
tions which consist of (3.5) and (3.8). The susceptibility at g = gc + 0 is given by 
1221 

(3.9) 

where fiij denotes the cofactor of the matrix M ,  and S; means the e n t r e  spin of 
the cluster just as in the 3 x 3 cluster. 
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3.2. Estimation of the non-classical critical aponent 

Here we have treated the 3 x 3  and 4 x 4  clusters. All the effective fields used here are 
given in figures 3 and 4, where only one typical spin product is displayed. Other spin 
products are obtained from its rotation and reflection. Although any combinations of 
effective fields are possible in principle, our previous studies [ZO, 221 showed that only 
some limited series of approximations can he used as canonical series. In such series 
of approximations the effective fields are applied almost in order of their strength, 
from the larger to the smaller. Thus, in order to see their strength, we have first 
applied all the effective fields given in figures 3 and 4. Then we have determined 
suitable ambinations of the effective fields. 

J ,  J ,  J ,  
Figure 4. Tbe multi-body effeclive fields applied on the 4 x 4 cluster. 

Results obtained from the 3 x 3 and 4 x 4 clusters are given in tables 2 and 3. 
These data are plotted in figure 5, where we have used the estimate g; = 1.528 
obtained from the DCA. 

These results show that approximations are improved when we consider multi- 
body effective fields: the mean-field critical points obtained from the :3 x 3 cluster 
plus multi-body effective fields are lower than the one obtained from the 4 x 4 cluster 
plus only one-body effective fields (the Bethe-like approximation [lo]). The ones 
obtained from the 4 x 4 cluster plus multi-body effective fields are much lower. 

Next, we see the coherent anomaly of these data. In the 3 x 3 cluster, the mean- 
field critical points hardly mry when the number of the multi-body effective fields 
is increased. Moreover, if we use g: = 1.528, we have y = 1.37. This estimate 
is clearly different from the one obtained from the DCA. In the 4 x 4 cluster, !he 
situation seems to he better. The mean-field critical points vary to some extent in 
accordance with altering the combination of effective fields, and we have y E 1.29 
with gf = 1.528. However, when the number of effective fields is increased, the 
data points tend to rapidly leave the CAM scaling line (see figure 5).  Then it is still 
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lhbk 2 The mean-field critical point gc, Ihe critical mefficient x+ and the multi-body 
effective fields { J , }  in the MEFA wing llle 3 X 3 cluster. Each appmximation includes 
all the one-body effective fields and h e  wen effective fields given in the bracket. 

~ 

Approximations gc zt J ,  JZ J3 J, J5 

1.602038 
1.582 626 
1.583 876 
1.583 869 
1.585419 
1.585405 
1.581 958 
1.582046 
1.581 821 
1.581 892 
1.581 441 
1.581 537 
1.581 460 
1.581 541 

0.4314 

a4707 
0.4707 
a4662 
a662 
a m 0  

a4775 

0.4751 

0.4766 

0.4772 
0.4788 
0.4783 
0.4787 
0.4783 

- 
0.123 22 
0.121 45 
0.121 41 
0.12084 

0.113M ' 

0.113 31 
0. I13 74 
0.1 I3 82 
0.11423 
0.11383 
0.11423 

0.12077 

o.113n 

- 
- 
- 
- 
- 
- 
0.038 05 
0.037 98 
0.038 44 
0.038 42 
0.038 73 
0.038 65 
0.038 67 
0.038 id 

~ 

- - - - - - 
-0.00371 - - 
-0.003~1 0 . ~ 0 4 1  - 

0.W046 - -0.037 13 
0 . ~ 0 4 7  0.00087 -0.03723 
- - - 
- -0.00478 - 
- - 0.001 61 
- -0.W484 0.00183 
0.00151 - - 
0.00149 -0.00470 - 
0.00154 - -0.000 24 
O.Wl49 -0.00469 -0.WOO7 

difficult to make the least-squares fitting using only the data obtained from the 4 x 4 
ciuster. Tnus, we use the (i j and (i ,  2 j approximations of the 3 x 3 ciuster and the 
(la, lb), (la, lb, 2), (lo, lb, 3), (la, lb, 2 , 3 )  and (la, 16,2,4) approximations of 
the 4 x 4 cluster, and we have 

g,'=1.542f0.006 y =  1.17f0.04. (3.1 1) 

If me the value of $7,' obtained frnm the DCA; the esimates are given hy 

9,' =1.528fO0.O16 y =  1.26f0.10. (3.12) 

4. Summary and discussion 

In the present paper we have formulated the DCA and the MEFA for the two- 
dimensional S = transverse king model on a square lattice in the ground state, 
and estimated the critical p i n t  9: and the critical exponent y using these series of 
approximations and the CAM. 

From the DCA, we have obtained 

g: = 1..528~0.016 y =  1.25fO.08 (4.1) 

and from the MEFA (using the value of g: estimated by the DCA), 

g,'= 1.528f0.016 y =  1.2Gf0.10. ( 4 4  

Btimates obtained from other methods are given in table 4. These results are 
consistent with each other. Thus, it is confirmed that our methods are applicable to 
two-dimensional systems. 

Then we inquire into the features of each approximation more precisely. In the 
DCA, the errors of the estimates seem to be large even though the coherent anomaly 
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S R  ss x i t  K 
II g g g  g 

I I I I I I I I I I I I,"," I d  I d t i  Id  
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-0.275 

+ -0.300 
I X  

2 -0.325 
M 

-0.350 

3x3. 
-0,375 

-1 .7 -1 .6  - 1 . 5  -1.4 - 1 3  

log,j(g,) 

Fkum 5. Coherent anomaly of the MEFA series (open circles) and the corresponding 
Bethe-like appmximations (full circles). n e  
straighl line, the slope of which is equal lo -$, is determined by the least-quam fitting 
using the data represented by the large open arcles and lhe wlue of g: obtained fmm 
the E A .  

lhblc 4 The estimates of g: and 7 obtained from other methods. Tne high-temperature 
apansion method is abbreviated Io HE, the low-temperature expansion method to LE 
and lhe finite-size sgling method to Fss. 

Log f+ is plotted against log 6(gc). 

Reierences Methods g: 1 

Hamer and Irving 17.41 m 1.520f0.005 1.257f0.010 
Hamer and Guttmann [U] m 1.522 f 0.002 1.245 f 0.004 
Marland [26] LTP. 1.522f0.001 1.25f0.02 
Henkel 1271 E3 1.524 f 0.001 1 . 2 4 i  0.02 

holds well in a wide range of 6(gc) .  This arises from the fact that the aberration 
of the data is not small. For example, when we see the 12-16, 12-20 and 16-20 
approximations, we find that the tangent of the line which connects these three data 
points is larger than the one given by the least-squares fitting (see figure 2). The 
reason may be that these three approximations are made by enlarging the cluster 
in only one direction, therefore a crossover to the critical phenomenon of the one- 
dimensional S = + transverse Ising model (-( = 1.75) appears. In short, the shapes 
of clusters are still important in the DCA, even though they do not explicitly appear 
in the calculation. 

A similar argument is possible for the MEFA. As is well known, a two-dimensional 
quantum spin system in the ground state corresponds to a three-dimensional classical 
spin system. In the present calculation we have only applied the diagonal effective 
fields, which correspond to an effective enlargement of clusters only toward the real 
directions. Thus, the previous crosover may appear when the number of multi-body 
effective fields is increased. In fact, the data points become larger than the CAM 
scaling line when too many effective fields are applied on clusters. 

Although this effect can be avoided by using the approximations including Only 
small numbers of multi-body effective fields, it is still dilficult to estimate the d u e s  
of 9,' and y at the same time. In fact, in the present calculation, we have obtained 
insufficient estimates (g; = 1.542 f 0.006, y = 1.17 f 0.04). The reason is that 
the mean-field critical points do  not vary so much even if the number of multi-body 
effective fields is increased. Then the present estimation is similar to a two-point (the 
data of the 3 x 3 cluster and the 4 x 4 cluster) fitting and therefore not accurate. This 
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shortcoming will be reformed if we take other boundary conditions [29] or consider 
the off-diagonal multi-body effective fields and the effective fields applied onto the 
bulk of the clusters. 
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